Training: Pythonista naar Python Master - Deel 5 Resource Optimalisatie met Python
Python
20 uur
Engels (US)

Training: Pythonista naar Python Master - Deel 5 Resource Optimalisatie met Python

Snel navigeren naar:

  • Informatie
  • Inhoud
  • Kenmerken
  • Meer informatie
  • Reviews
  • FAQ

Productinformatie

Wil jij jezelf ontwikkelen van Pythonista naar een echte Python Master? Dan is dit ontwikkelpad iets voor jou!

Dit is het 5e en laatste deel van het ontwikkelpad Pythonista naar Python Master.

Met een toename in data-analyse, machine learning en web applicatie ontwikkeling, maken veel ontwikkelaars gebruik van Python vanwege zijn robuuste en uitgebreide bibliotheken, makkelijk te leren syntaxis en beheersbaarheid.

Deze training wordt verzorgd door een Indisch expert.

Wanneer je kiest voor dit ontwikkelpad, krijg jij:

  • toegang tot de trainingen Python voor Developers, Data Visualisatie voor Web Apps, Dynamic Data Handling met Python, Restful Web Services met Python, en Resource Optimalisatie met Python. Daarnaast krijg je toegang tot nog veel meer trainingen, proefexamens, bootcamps, e-books enzovoort.
  • mentor asset in diverse trainingen.

Om een echte Python Master te worden, leer je in dit laatste deel ook over OpenCV, een bibliotheek die image processing en analyse faciliteert. Daarnaast verken je Faust, een stream processing bibliotheek waarmee je code kunt schrijven om gegevens te verwerken die beschikbaar zijn als streams.

Inhoud van de training

Pythonista naar Python Master - Deel 5 Resource Optimalisatie met Python

20 uur

OpenCV: Introduction

A cross-platform library, OpenCV facilitates image processing and analysis. In this course, you'll discover fundamental concepts related to computer vision and the basic operations which can be performed on images using OpenCV. You'll begin by outlining how to read images from your file system into your Python source in the form of arrays and then save an image array into a local file. Next, you'll explore color images represented as a combination of blue, green, and red channels, how to convert color images to grayscale, and how grayscale images are defined. Finally, you'll perform basic operations on images by investigating how to combine two images using an add operation and make one of the added images more prominent than the other using a weighted addition. Conversely, you'll also perform a subtract operation using two images.

OpenCV: Manipulating Images

Images often require to be manipulated to extract meaningful portions of an image or prepare them for a machine learning pipeline. OpenCV can help with this. In this course, you'll investigate a variety of image manipulation operations using OpenCV. You'll begin by recognizing how to filter certain portions of an image using bitwise operations. Next, you'll explore the concept of masks and how to use them while extracting parts of an image. You'll then outline how to apply geometrical operations by resizing an image to specific dimensions and discover challenges that such operations present. You'll finish the course by examining image transformations such as rotations and translations to help orient an image to your requirements. Finally, you'll discover how to flip and warp images to present them from a different perspective.

OpenCV: Advanced Image Operations

Many image processing operations involve complex math, but when using OpenCV, much of that is abstracted from the developer. In this course, you'll gain a high-level understanding of advanced image operations in OpenCV. You'll begin by recognizing how to apply different blur operations to an image. These range from simple blurs to Gaussian and median blurs. While doing so, you'll examine their specific advantages and disadvantages and how to distinguish between them. Moving on, you'll outline how to highlight objects in an image using edge detection and augment images by adding shapes and objects to them. Finally, you'll discover how to work with pre-trained classifiers to detect people in an image and perform morphological transformations to emphasize or suppress specific parts of an image.

Faust: Getting Started with Stream Processing

Faust is a stream processing library that allows you to write code to process data available as streams. In this course, you'll explore the basics of stream processing and how it fundamentally differs from batch processing. You'll start by examining the components of a stream processing system architecture, specifically the role of stream transport. You'll then investigate the Faust stream processing library, which uses native Python code for transformations on streaming data. Moving on, you'll explore what's meant by producers, consumers, and topics in Apache Kafka. You'll install Faust on your local machine as well as the Apache Kafka messaging service. You'll then use these to write a stream processing application. When you're finished with this course, you'll be able to clearly articulate the characteristics of stream processing and work with Apache Kafka and Faust to perform simple operations on input streams.

Faust: Stream Processing Using Models, Agents, & Channels

Stream processing in Faust uses native Python code, meaning you don't have to learn a new domain-specific language to perform data transformations. All you need to know is how existing concepts, such as models, work within a Faust context. Faust models allow you to specify fields and their data types and use this well-defined data structure to access streaming data. In this course, you'll learn how to represent the individual elements of a stream using Faust models. You'll work with agents, which are at the heart of every Faust stream processing application. You'll perform operations using agents and invoke agents synchronously and asynchronously from within your application. You'll then work with channels in Faust. At the end of this course, you'll have the confidence to use models, agents, and channels in the right way to build a successful application.

Faust: Performing Operations & Maintaining State Using Tables

Faust streams support a wide range of operations. In this course, you'll learn how to perform several of these. You'll also work with Faust tables - which store state in the form of key-value pairs and allow for the recovery of failed processing, making Faust fault-tolerant. You'll start off by using the group by operation to designate a key used to repartition an input stream and create a new topic in Kafka. You'll then use the items() operation to access the key and message value and take() operation to buffer multiple elements in a stream. Next, you'll work with tables to conduct stateful stream processing, illustrating how table data is stored in an embedded RocksDB database. When you've finished this course, you'll be able to apply a wide range of operations on input streams and perform stateful stream processing using tables.

Faust: Stream Processing Using Windowing Operations

When working with data, windows are a handy tool to accumulate data subsets from input streams and perform aggregation operations on this specific data. In this course, you'll learn how to perform stream processing through windowing operations in Faust. You'll start by examining the different windowing operations possible on input streams, including tumbling, sliding, count, session, and global windows. Next, you'll distinguish the three notions of time associated with streaming events: event, ingestion, and processing time. You'll then use Faust window features to perform windowing operations on input streams and emit aggregation results for every window. Finally, you'll use the REST API server, which all Faust applications have, to make streaming code metrics and table data accessible to the user. Once you're done with this course, you'll be able to use windowing operations via Faust and expose metrics using web views.

Resource Optimization with Python

In this practice lab, learners will be presented with a series of exercises to practice developing in Python. Exercises include tasks such as using OpenCV to read and write images, perform bitwise operations, detect and blur noisy images, and detect people. Learners will also practice with Faust to peform batch processing, create a stream model, and perform operations. Learners can also use the environment as an open sandbox. No installation or configuration is required, so you can gain immediate hands-on experience. Create new files or upload your own from a storage location of your choice, such as GitHub, and you can practice coding right away! You can even download a copy of your work when you're done. Whether you're looking to dive into the code presented within our courses or you want to work on your own coding projects, this lab environment will provide you with everything you need. So, go ahead and start coding today! See below for a complete list of available software. - Python 3.7 - Python 2.7 - Tkinter GUI - Python 3 libraries: - Django - Flask - Flask-Migrate - Flask-SQLAlchemy - Flask-WTF - beautifulsoup4 - selenium - Python 2/3 libraries: - ipython - pytest - testbook - Pip 2 and 3 - Node.js - npm - Git - Vim editor - Standard Python libraries This lab is part of the Resource Optimization with Python track of the Skillsoft Aspire Pythonista to Python Master Journey.

Final Exam: Resource Optimization with Python

Final Exam: Resource Optimization with Python will test your knowledge and application of the topics presented throughout the Resource Optimization with Python track of the Skillsoft Aspire Pythonista to Python Master Journey.

Kenmerken

Docent inbegrepen
Bereidt voor op officieel examen
Engels (US)
20 uur
Python
365 dagen online toegang
HBO

Meer informatie

Doelgroep Softwareontwikkelaar, Webontwikkelaar
Voorkennis

Je hebt ten minste basiskennis en vaardigheden in het programmeren met Python. Je hebt in ieder geval deel 1,2, 3 en 4 van dit leerpad gevolgd.

Resultaat

Na het volgen van dit laatste deel van deze training, ben je bekend met:

  • OpenCV.
  • Faust.

Positieve reacties van cursisten

Training: Leidinggeven aan de AI transformatie

Nuttige training. Het bestelproces verliep vlot, ik kon direct beginnen.

- Mike van Manen

Onbeperkt Leren Abonnement

Onbeperkt Leren aangeschaft omdat je veel waar voor je geld krijgt. Ik gebruik het nog maar kort, maar eerste indruk is goed.

- Floor van Dijk

Training: Leidinggeven aan de AI transformatie

Al jaren is icttrainingen.nl onze trouwe partner op het gebied van kennisontwikkeling voor onze IT-ers. Wij zijn blij dat wij door het platform van icttrainingen.nl maatwerk en een groot aanbod aan opleidingen kunnen bieden aan ons personeel.

- Loranne, Teamlead bij Inwork

Hoe gaat het te werk?

1

Training bestellen

Nadat je de training hebt besteld krijg je bevestiging per e-mail.

2

Toegang leerplatform

In de e-mail staat een link waarmee je toegang krijgt tot ons leerplatform.

3

Direct beginnen

Je kunt direct van start. Studeer vanaf nu waar en wanneer jij wilt.

4

Training afronden

Rond de training succesvol af en ontvang van ons een certificaat!

Veelgestelde vragen

Veelgestelde vragen

Op welke manieren kan ik betalen?

Je kunt bij ons betalen met iDEAL, PayPal, Creditcard, Bancontact en op factuur. Betaal je op factuur, dan kun je met de training starten zodra de betaling binnen is.

Hoe lang heb ik toegang tot de training?

Dit verschilt per training, maar meestal 180 dagen. Je kunt dit vinden onder het kopje ‘Kenmerken’.

Waar kan ik terecht als ik vragen heb?

Je kunt onze Learning & Development collega’s tijdens kantoortijden altijd bereiken via support@icttrainingen.nl of telefonisch via 026-8402941.

Background Frame
Background Frame

Onbeperkt leren

Met ons Unlimited concept kun je onbeperkt gebruikmaken van de trainingen op de website voor een vast bedrag per maand.

Bekijk de voordelen

Heb je nog twijfels?

Of gewoon een vraag over de training? Blijf er vooral niet mee zitten. We helpen je graag verder. Daar zijn we voor!

Contactopties