Training: Pythonista naar Python Master - Deel 2 Data Visualisatie voor Web Apps
Python
24 uur
Engels (US)

Training: Pythonista naar Python Master - Deel 2 Data Visualisatie voor Web Apps

Snel navigeren naar:

  • Informatie
  • Inhoud
  • Kenmerken
  • Meer informatie
  • Reviews
  • FAQ

Productinformatie

Heb je ervaring met het programmeren in Python en wil je jouw skills tot een hoger niveau brengen? Wil jij jezelf ontwikkelen van Pythonista naar een echte Python Master? Dan is dit ontwikkelpad iets voor jou!

Dit is deel 2 van het ontwikkelpad Pythonista naar Python Master.

Met een toename in data-analyse, machine learning en web applicatie ontwikkeling, maken veel ontwikkelaars gebruik van Python vanwege zijn robuuste en uitgebreide bibliotheken, makkelijk te leren syntaxis en beheersbaarheid.

Deze training wordt verzorgd door een Indisch expert.

Wanneer je kiest voor dit ontwikkelpad, krijg jij:

  • Toegang tot de trainingen Python voor Developers, Data Visualisatie voor Web Apps, Dynamic Data Handling met Python, Restful Web Services met Python, en Resource Optimalisatie met Python. Daarnaast krijg je toegang tot nog veel meer trainingen, proefexamens, bootcamps, e-books enzovoort.
  • Mentor asset in diverse trainingen.

In dit tweede deel van dit ontwikkelpad ga je aan de slag met Python statistische plots, Python met Altair, en Dash Python frameworks.

Inhoud van de training

Pythonista naar Python Master - Deel 2 Data Visualisatie voor Web Apps

24 uur

Python Statistical Plots: Visualizing & Analyzing Data Using Seaborn

The wealth of Python data visualization libraries makes it hard to decide the best choice for each use case. However, if you're looking for statistical plots that are easy to build and visually appealing, Seaborn is the obvious choice. You'll begin this course by using Seaborn to construct simple univariate histograms and use kernel density estimation, or KDE, to visualize the probability distribution of your data. You'll then work with bivariate histograms and KDE curves. Next, you'll use box plots to concisely represent the median and the inter-quartile range (IQR) and define outliers in data. You'll work with boxen plots, which are conceptually similar to box plots but employ percentile markers rather than whiskers. Finally, you'll use Violin plots to represent the entire probability density function, obtained via a KDE estimation, for your data.

Python Statistical Plots: Time Series Data & Regression Analysis in Seaborn

Seaborn's smartly designed interface lets you illuminate data through aesthetically pleasing statistical graphics that are incredibly easy to build. In this course, you'll discover Seaborn's capabilities. You'll begin using strip plots and swarm plots and recognizing how they work together using low-intensity noise. You'll then work with time series data through various techniques, like resampling data at different time frequencies and plotting with confidence intervals and other types of error bars. Next, you'll visualize both logistic and linear regression curves. Moving on, you'll use the pairplot function to visualize the relationships between columns in your data, taken two at a time, in a grid format. You'll change the chart type being visualized and create pair plots with multiple chart types in each plot. Lastly, you'll create and format a heatmap of a correlation matrix to identify relationships between dataset columns.

Python with Altair: An Introduction to Altair

This course will get you familiar with the building blocks of Altair visualizations and some of the important chart settings. You will touch upon some of the fundamentals of plotting graphs in Altair. You'll start off by learning about the basic data structures that can form the basis of Altair visualizations, including JSON data and Pandas DataFrames in both wide-form and long-form. You'll then move on to plotting one of the simpler graphs, histograms, to visualize the distribution of values for a quantitative field in your dataset. While doing so, you'll get to explore the different ways in which Altair graphs can be customized including augmenting your chart with text, layering histograms to view two distributions together, and making histograms interactive.

Python with Altair: Plotting Fundamental Graphs

This course will introduce you to a breadth of charts available in Altair and how you can use them to get an all-round understanding of your data. The focus is to get you familiar with the wide variety of graphs that are available. You'll begin by visualizing a distribution of numeric values using box plots and violin charts, each of which has its own strengths and limitations when analyzing distributions. You'll then move on to bar charts to analyze numbers associated with categories in your data. While doing so, you will get to explore a variety of aggregate operations that are available in Altair in order to calculate a sum, mean, median, and so on. You'll then use line charts to visualize the changes in a particular value over a period of time and also its related visual - the area chart. Finally, you'll produce scatter plots to visualize the relationship between a pair of fields in your data. Throughout this course, you'll delve into a number of customizations which are available in Altair for each of the graphs which you plot.

Python with Altair: Working with Specialized Graphs

This course introduces you to the use of Altair visualizations which can convey very detailed information for specialized datasets. You will cover some of the graphs that can be used to convey the information in very specific kinds of datasets, while also giving you some hands-on experience with advanced chart configurations. You'll begin by plotting information on a map, both to mark locations of places as well as to convey numerical information about regions. You'll then build a heatmap to analyze the numbers associated with a combination of two categorical variables. Next, you'll implement candlestick charts to visualize stock price movements, dot plots to analyze the range of movement for some values, and Gantt charts to view a project plan. Finally, you'll explore the use of window functions to analyze the top K elements in each category of your dataset.

Dash Python Framework: Dash for Interactive Web Apps

With Dash, you can create interactive web apps with elements such as buttons, dropdowns, sliders, range sliders, checkboxes, date pickers, and more. In this course, you'll learn how to get started with Dash, beginning with installing Dash and various extension libraries using the pip package installer. You'll move on to building web apps using Dash and the Plotly Express library. You'll also work with two other important Dash extension libraries - the Dash Core Components library and the Dash HTML Components library. You'll put all of these libraries together while exploring some of the default interactivity features, such as zooming and panning charts. You'll create a callback app where the title of a chart updates based on the values on a range slider before creating a more refined app with a callback that updates the chart itself and not just the title. Finally, you'll build a fully-fledged interactive scatter plot.

Dash Python Framework: Leveraging Dash with User Input & Dash DataTable

If you've used Dash before, you'll know how quickly the native HTML table abstraction from dash_html_components can become complicated and cumbersome due to the need to create a TR tag for each row and then individual TD tags within each TR tag for each cell value. Using the dash DataTable abstraction mitigates all of these weaknesses. In this course, you'll practice this technique before using the Dash data table to display data in the form of tables in Dash apps. You may also know that you can harness the power of Dash using HTML components or components from the Dash Core Component library. In this course, you'll also get a chance to work with user input and buttons in Dash apps using the most appropriate components.

Dash Python Framework: Creating Widgets in Dash Apps

The Dash DAQ library can be used to represent data in ways that correspond to real-world physical measurement mechanisms, such as switches, thermometers, knobs, dials, gauges, LED displays, and tanks. In this course, you'll learn how to work with this library. In addition, you'll practice creating widgets using Dash core components. You'll also create Dropdowns, TextAreas, RadioButtons, and Checklists. Finally, you'll cover two important aspects of building web apps - building tabbed apps with different controls on each tab and accepting user upload of files. You'll build a web app that accepts a file for upload, either via drag-and-drop or via direct user navigation, and then checks whether the file is a .csv file and if so, displays the contents of that file in a DataTable.

Data Visualization for Web Apps Using Python

In this practice lab, learners will be presented with a series of exercises to practice developing in Python. Exercises include tasks such as visualizing univariate data using histograms and time series plots. Then use Altair to visualize data in histograms, bar charts, plots, geographic maps and heat maps. Learners will also practice creating a Dash with visualization, different user inputs, and with different components and Dash DAQ. Learners can also use the environment as an open sandbox. No installation or configuration is required, so you can gain immediate hands-on experience. Create new files or upload your own from a storage location of your choice, such as GitHub, and you can practice coding right away! You can even download a copy of your work when you're done. Whether you're looking to dive into the code presented within our courses or you want to work on your own coding projects, this lab environment will provide you with everything you need. So, go ahead and start coding today! See below for a complete list of available software. - Python 3.7 - Python 2.7 - Tkinter GUI - Python 3 libraries: - Django - Flask - Flask-Migrate - Flask-SQLAlchemy - Flask-WTF - beautifulsoup4 - selenium - Python 2/3 libraries: - ipython - pytest - testbook - Pip 2 and 3 - Node.js - npm - Git - Vim editor - Standard Python libraries This lab is part of the Data Visualization for Web Apps Using Python track of the Skillsoft Aspire Pythonista to Python Master Journey.

Final Exam: Data Visualization for Web Apps Using Python

Final Exam: Data Visualization for Web Apps Using Python will test your knowledge and application of the topics presented throughout the Data Visualization for Web Apps Using Python track of the Skillsoft Aspire Pythonista to Python Master Journey.

Kenmerken

Docent inbegrepen
Bereidt voor op officieel examen
Engels (US)
24 uur
Python
365 dagen online toegang
HBO

Meer informatie

Doelgroep Softwareontwikkelaar, Webontwikkelaar
Voorkennis

Je hebt ten minste basiskennis en vaardigheden in het programmeren met Python. Je hebt in ieder geval deel 1 van dit leerpad gevolgd.

Resultaat

Na het volgen van deze training ben je bekend met:

  • Python statistische plots
  • Python met Altair
  • Dash Python frameworks

Positieve reacties van cursisten

Training: Leidinggeven aan de AI transformatie

Nuttige training. Het bestelproces verliep vlot, ik kon direct beginnen.

- Mike van Manen

Onbeperkt Leren Abonnement

Onbeperkt Leren aangeschaft omdat je veel waar voor je geld krijgt. Ik gebruik het nog maar kort, maar eerste indruk is goed.

- Floor van Dijk

Training: Leidinggeven aan de AI transformatie

Al jaren is icttrainingen.nl onze trouwe partner op het gebied van kennisontwikkeling voor onze IT-ers. Wij zijn blij dat wij door het platform van icttrainingen.nl maatwerk en een groot aanbod aan opleidingen kunnen bieden aan ons personeel.

- Loranne, Teamlead bij Inwork

Hoe gaat het te werk?

1

Training bestellen

Nadat je de training hebt besteld krijg je bevestiging per e-mail.

2

Toegang leerplatform

In de e-mail staat een link waarmee je toegang krijgt tot ons leerplatform.

3

Direct beginnen

Je kunt direct van start. Studeer vanaf nu waar en wanneer jij wilt.

4

Training afronden

Rond de training succesvol af en ontvang van ons een certificaat!

Veelgestelde vragen

Veelgestelde vragen

Op welke manieren kan ik betalen?

Je kunt bij ons betalen met iDEAL, PayPal, Creditcard, Bancontact en op factuur. Betaal je op factuur, dan kun je met de training starten zodra de betaling binnen is.

Hoe lang heb ik toegang tot de training?

Dit verschilt per training, maar meestal 180 dagen. Je kunt dit vinden onder het kopje ‘Kenmerken’.

Waar kan ik terecht als ik vragen heb?

Je kunt onze Learning & Development collega’s tijdens kantoortijden altijd bereiken via support@icttrainingen.nl of telefonisch via 026-8402941.

Background Frame
Background Frame

Onbeperkt leren

Met ons Unlimited concept kun je onbeperkt gebruikmaken van de trainingen op de website voor een vast bedrag per maand.

Bekijk de voordelen

Heb je nog twijfels?

Of gewoon een vraag over de training? Blijf er vooral niet mee zitten. We helpen je graag verder. Daar zijn we voor!

Contactopties