Data Analist naar Data Scientist - Deel 3 Data Ops
31 uur
Engels (US)

Data Analist naar Data Scientist - Deel 3 Data Ops

Vanaf € 361,79 € 299,00

Vanaf € 361,79 € 299,00

Extra opties

1 x Data Analist naar Data Scientist - Deel 3 Data Ops   + € 361,79 € 299,00
€ 299,00
Incl. BTW

Snel navigeren naar:

  • Informatie
  • Inhoud
  • Kenmerken
  • Meer informatie
  • Reviews
  • FAQ


Dit is deel 3 van het leerpad Data Analist naar Data Scientist.

In dit derde deel wordt gefocust op de vaardigheden en kennis die je nodig hebt als Data Ops. Onderwerpen als: governance, security, harnessing volume en velocity komen aan bod.

Je vindt hier verschillende cursussen die je voorbereiden om aan de slag te kunnen als Data Ops. Daarnaast is er een livelab beschikbaar om te oefenen. Je sluit dit deel af met een examen.

Inhoud van de training

Data Analist naar Data Scientist - Deel 3 Data Ops

31 uur

Deploying Data Tools: Data Science Tools

Discover the different uses of data

Delivering Dashboards: Management Patterns

Explore the concept of dashboards and the best practices that can be adopted to build effective dashboards. How to implement dashboards and visualizations using PowerBI and ELK and the concepts of leaderboard and scorecards is also covered.

Delivering Dashboards: Exploration & Analytics

Explore the role played by dashboards in data exploration and deep analytics. Examine the essential patterns of dashboard design and how to implement appropriate dashboards using Kibana, Tableau, and Qlikview.

Cloud Data Architecture: DevOps & Containerization

Discover how to implement cloud architecture for large scale applications, serverless computing, adequate storage, and analytical platforms using DevOps tools and cloud resources.

Cloud Data Architecture: Data Management & Adoption Frameworks

Explore how to implement containers and data management on popular cloud platforms like AWS and GCP. Planning big data solutions, disaster recovery, and backup and restore in the cloud are also covered.

Compliance Issues and Strategies: Data Compliance

It's crucial that organizations remain compliant with their big data implementations. Examine compliance and its relationship with big data, as well as popular resources for developing compliance strategies

Implementing Governance Strategies

As organizations become more data science aware, it's critical to understand the role of governance in big data implementation. In this course you will examine governance and its relationship with big data, and how to plan and design a big data governance strategy.

Data Access & Governance Policies: Data Access Oversight and IAM

Data sensitivity and security breaches are common in news media reports. Explore how a structured data access governance framework results in reducing the likelihood of data security breaches.

Data Access & Governance Policies: Data Classification, Encryption, and Monitoring

Before data can be sufficiently protected, its sensitivity must be known. Explore how data classification determines which security measure applies to varying classes of data.

Streaming Data Architectures: An Introduction to Streaming Data

Spark is an analytics engine built

Streaming Data Architectures: Processing Streaming Data

Discover how to develop applications

Scalable Data Architectures: Introduction

Explore a theoretical foundation on the need for and the characteristics of scalable data architectures. Using data warehouses to store, process, and analyze big data is also covered.

Scalable Data Architectures: Introduction to Amazon Redshift

Using a hands-on lab approach, explore how to use Amazon Redshift to set up and configure a data warehouse on the cloud. Discover how to interact with the Redshift service using both the console and the AWS CLI.

Data Pipeline: Process Implementation Using Tableau & AWS

Explore the concept of data pipelines, the processes and stages involved in building them, and the technologies like Tableau and AWS that can be used.

Scalable Data Architectures: Working with Amazon Redshift & QuickSight

Explore the loading of data from an external source such as Amazon S3 into a Redshift cluster, as well as the configuration of snapshots and the resizing of clusters. Discover how to use Amazon QuickSight to visualize data.

Building Data Pipelines

Explore data pipelines and methods of processing them with and without ETL. Creating data pipelines using Apache Airflow is also covered.

Data Pipeline: Using Frameworks for Advanced Data Management

Discover how to implement data pipelines using Python Luigi, integrate Spark, and Tableau to manage data pipelines, use Dask arrays, and build data pipeline visualization with Python.

Data Sources: Integration

  • To become proficient in data science, you have to understand

  • edge computing. This is where data is processed near the source or
  • at the edge of the network while in a typical cloud environment,
  • data processing happens in a centralized data storage location. In
  • this course you will exam the architecture of IoT solutions and the
  • essential approaches of integrating data sources.

Data Sources: Implementing Edge on the Cloud

  • To become proficient in data science, you have to understand

  • edge computing. This is where data is processed near the source or
  • at the edge of the network while in a typical cloud environment,
  • data processing happens in a centralized data storage location. In
  • this course you will explore the implementation of IoT on prominent
  • cloud platforms like AWS and GCP. Discover how to work with IoT
  • Device Simulator and generate data streams using MQTT.

Data Ops 16: Securing Big Data Streams

Examine the security risks related to modern data capture and processing methods such as streaming analytics, the techniques and tools employed to mitigate security risks, and best practices related to securing big data.

Harnessing Data Volume & Velocity: Big Data to Smart Data

Explore the concept of smart data and the associated life cycle and benefits afforded by smart data. Frameworks and algorithms that can help transition big data to smart data are also covered.

Data Rollbacks: Transaction Rollbacks & Their Impact

Explore the concepts of transactions, transaction management policies, and rollbacks. Discover how to implement transaction management and rollbacks using SQL Server.

Data Rollbacks: Transaction Management & Rollbacks in NoSQL

Explore the differences between transaction management using NoSQL and MongoDB. Discover how to implement of change data capture in databases and NoSQL.

The Psychology of Information Security: Resolving Conflicts Between Security Compliance and Human Behaviour

Providing methods and techniques to engage stakeholders and encourage buy-in, this insightful book explains the importance of careful risk management and how to align a security program with wider business objectives.

Beginning Apache Spark 2: With Resilient Distributed Datasets, Spark SQL, Structured Streaming and Spark Machine Learning Library

A tutorial on the Apache Spark platform written by an expert engineer and trainer, this book will give you the fundamentals to become proficient in using Apache Spark and know when and how to apply it to your big data applications.

Pro Spark Streaming: The Zen of Real-Time Analytics Using Apache Spark

Introducing use cases in each chapter from a specific industry, and using publicly available datasets from that domain to unravel the intricacies of production-grade design and implementation, this book walks you through end-to-end real-time application development using real-world applications, data, and code.

Network and Data Security for Non-Engineers

Presenting the tools, establishing persistent presence, and examining the use of sites as testbeds to determine successful variations of software that elude detection, this book explains network and data security by analyzing the Anthem breach step-by-step, and how hackers gain entry, place hidden software, download information, and hide the evidence of their entry.

Practical Enterprise Data Lake Insights: Handle Data-Driven Challenges in an Enterprise Big Data Lake

Use this practical guide to successfully handle the challenges encountered when designing an enterprise data lake and learn industry best practices to resolve issues.

Processing Big Data with Azure HDInsight: Building Real-World Big Data Systems on Azure HDInsight Using the Hadoop Ecosystem

As most Hadoop and Big Data projects are written in either Java, Scala, or Python, this book minimizes the effort to learn another language and is written from the perspective of a .NET developer.

Final Exam: Data Ops

Final Exam: Data Ops will test your knowledge and application of the topics presented throughout the Data Ops track of the Skillsoft Aspire Data Science Journey.


Engels (US)
31 uur
365 dagen online toegang

Meer informatie

Doelgroep Data-analist

Je wordt verondersteld de kennis en vaardigheden te beheersen die in deel 1 (Data Analist) en deel 2 (Data Wrangler) van dit leerpad worden behandeld.


Je hebt de vaardigheden en kennis om werkzaamheden als Data Ops uit te voeren.

Positieve reacties van cursisten

Training: Leidinggeven aan de AI transformatie

Nuttige training. Het bestelproces verliep vlot, ik kon direct beginnen.

- Mike van Manen

Onbeperkt Leren Abonnement

Onbeperkt Leren aangeschaft omdat je veel waar voor je geld krijgt. Ik gebruik het nog maar kort, maar eerste indruk is goed.

- Floor van Dijk

Training: Leidinggeven aan de AI transformatie

Al jaren is onze trouwe partner op het gebied van kennisontwikkeling voor onze IT-ers. Wij zijn blij dat wij door het platform van maatwerk en een groot aanbod aan opleidingen kunnen bieden aan ons personeel.

- Loranne, Teamlead bij Inwork

Hoe gaat het te werk?


Training bestellen

Nadat je de training hebt besteld krijg je bevestiging per e-mail.


Toegang leerplatform

In de e-mail staat een link waarmee je toegang krijgt tot ons leerplatform.


Direct beginnen

Je kunt direct van start. Studeer vanaf nu waar en wanneer jij wilt.


Training afronden

Rond de training succesvol af en ontvang van ons een certificaat!

Veelgestelde vragen

Veelgestelde vragen

Op welke manieren kan ik betalen?

Je kunt bij ons betalen met iDEAL, PayPal, Creditcard, Bancontact en op factuur. Betaal je op factuur, dan kun je met de training starten zodra de betaling binnen is.

Hoe lang heb ik toegang tot de training?

Dit verschilt per training, maar meestal 180 dagen. Je kunt dit vinden onder het kopje ‘Kenmerken’.

Waar kan ik terecht als ik vragen heb?

Je kunt onze Learning & Development collega’s tijdens kantoortijden altijd bereiken via of telefonisch via 026-8402941.

Background Frame
Background Frame

Onbeperkt leren

Met ons Unlimited concept kun je onbeperkt gebruikmaken van de trainingen op de website voor een vast bedrag per maand.

Bekijk de voordelen

Heb je nog twijfels?

Of gewoon een vraag over de training? Blijf er vooral niet mee zitten. We helpen je graag verder. Daar zijn we voor!