Training: AI Apprentice naar AI Architect - Deel 1 AI Apprentice
Artificial Intelligence
22 uur
Engels (US)

Training: AI Apprentice naar AI Architect - Deel 1 AI Apprentice

Snel navigeren naar:

  • Informatie
  • Inhoud
  • Kenmerken
  • Meer informatie
  • Reviews
  • FAQ

Productinformatie

Deze training biedt een praktijkgerichte blik op een breed scala aan onderwerpen in AI-ontwikkeling. Tijdens deze training verken je de fundamenten van AI, leer je AI programmeren in Python, ontwerp je HCI (Human-Computer Interaction), ontwikkel je vaardigheden in computer vision en cognitieve modellen. Je krijgt inzicht in real-world toepassingen van AI, verschillende AI-types en het belang van het selecteren van de juiste programmeertaal. Je ontwikkelt de vaardigheid om gebruiksvriendelijke AI-toepassingen te ontwerpen en cognitieve modellen te implementeren. Door middel van praktische oefeningen en een afsluitend examen wordt je kennis en vaardigheden beoordeeld.

Inhoud van de training

AI Apprentice naar AI Architect - Deel 1 AI Apprentice

22 uur

Artificial Intelligence: Basic AI Theory

Artificial intelligence (AI) is transforming the way businesses and governments are developing and using information. This course offers an overview of AI, its history, and its use in real-world situations; prior knowledge of machine learning, neural network, and probabilistic approaches is recommended. There are multiple definitions of AI, but the most common view is that it is software which enables a machine to think and act like a human, and to think and act rationally. Because AI differs from plain programing, the programming language used will depend on the application. In this series of videos, you will be introduced to multiple tools and techniques used in AI development. Also discussed are important issues in its application, such as the ethics and reliability of its use. You will set up a programing environment for developing AI applications and learn the best approaches to developing AI, as well as common mistakes. Gain the ability to communicate the value AI can bring to businesses today, along with multiple areas where AI is already being used.

Artificial Intelligence: Types of Artificial Intelligence

This course covers simple and complex types of AI (artificial intelligence) available in today's market. In it, you will explore theories of mind research, self-aware AI, artificial narrow intelligence, artificial general intelligence, and artificial super intelligence. First, learn the ways in which AI is used today in agriculture, medicine, by the military, in financial services, and by governments. As a special field of computer science that uses mathematics, statistics, cognitive and behavioral sciences, AI uses unique applications to perform actions based on data it uses as an input, and does so by mimicking the activity within the human brain. No data can be 100 percent accurate, bringing a certain degree of uncertainty to any kind of AI application. So this course seeks to explain how and why AI needs to be developed for a particular use scenario, helping you understand the many aspects involved in AI programming and how AI performance needs to be good enough to complete a certain task.

Artificial Intelligence: Human-computer Interaction Overview

In developing AI (artificial intelligence) applications, it is important to play close attention to human-computer interaction (HCI) and design each application for specific users. To make a machine intelligent, a developer uses multiple techniques from an AI toolbox; these tools are actually mathematical algorithms that can demonstrate intelligent behavior. The course examines the following categories of AI development: algorithms, machine learning, probabilistic modelling, neural networks, and reinforcement learning. There are two main types of AI tools available: statistical learning, in which large amount of data is used to make certain generalizations that can be applied to new data; and symbolic AI, in which an AI developer must create a model of the environment with which the AI agent interacts and set up the rules. Learn to identify potential AI users, the context of using the applications, and how to create user tasks and interface mock-ups.

Artificial Intelligence: Human-computer Interaction Methodologies

Human computer interaction (HCI) design is the starting point for an artificial intelligence (AI) program. Overall HCI design is a creative problem-solving process oriented to the goal of satisfying largest number of customers. In this course, you will cover multiple methodologies used in the HCI design process and explore prototyping and useful techniques for software development and maintenance. First, learn how the anthropomorphic approach to HCI focuses on keeping the interaction with computers similar to human interactions. The cognitive approach pays attention to the capacities of a human brain. Next, learn to use the empirical approach to HCI to quantitatively evaluate interaction and interface designs, and predictive modeling is used to optimize the screen space and make interaction with the software more intuitive. You will examine how to continually improve HCI designs, develop personas, and use case studies and conduct usability tests. Last, you will examine how to improve the program design continually for AI applications; develop personas; use case studies; and conduct usability tests.

Python AI Development: Introduction

Python is one of the most popular programming languages and programming AI in this language has many advantages. In this course, you'll learn about the differences between Python and other programming languages used for AI, Python's role in the industry, and cases where using Python can be beneficial. You'll also examine multiple Python tools, libraries, and use environments and recognize the direction in which this language is developing.

Python AI Development: Practice

In this course, you'll learn about development of AI with Python, starting with simple projects and ending with comprehensive systems. You'll examine various Python environments and ways to set them up and begin coding, leaving you with everything you need to begin building your own AI solutions in Python.

Computer Vision: Introduction

In this course, you'll explore basic Computer Vision concepts and its various applications. You'll examine traditional ways of approaching vision problems and how AI has evolved the field. Next, you'll look at the different kinds of problems AI can solve in vision. You'll explore various use cases in the fields of healthcare, banking, retail cybersecurity, agriculture, and manufacturing. Finally, you'll learn about different tools that are available in CV.

Computer Vision: AI & Computer Vision

In this course, you'll explore Computer Vision use cases in fields like consumer electronics, aerospace, automotive, robotics, and space. You'll learn about basic AI algorithms that can help you solve vision problems and explore their categories. Finally, you'll apply hands-on development practices on two interesting use cases to predict lung cancer and deforestation.

Cognitive Models: Overview of Cognitive Models

To implement cognitive modeling inside AI systems, a developer needs to understand the major differences between commonly used cognitive models and their best qualities. Today cognitive models are actively utilized in healthcare, neuroscience, manufacturing and psychology and their importance compared to other AI approaches is expected to rise. Developing a firm understanding of cognitive modeling and its use cases is essential to anyone involved in creating AI systems. In this course, you'll identify unique features of cognitive models, which help create even more intelligent software systems. First you will learn about the different types of cognitive models and the disciplines involved in cognitive modeling. Further, you will discover main use cases for cognitive models in the modern world and learn about the history of cognitive modeling and how it is related to computer science and AI.

Cognitive Models: Approaches to Cognitive Learning

Practice plays an important role in AI development and helps one get familiarized with commonly used tools and frameworks. Knowing which methods to apply and when is critical to completing projects quickly and efficiently. Based on code examples provided, you will be able to quickly learn important cognitive modeling libraries and apply this knowledge to new projects in the field. In this course, you'll learn the essentials of working with cognitive models in a software system. First, you will get a detailed overview of each type of learning used in cognitive modeling. Further, you will learn about the toolset used for cognitive modeling with Python and recall which role cognitive models play in AI and business. Finally, you will go through various cognitive model implementations to develop skills necessary to implement cognitive modeling in real world.

AI Apprentice

In this lab, you will perform AI Apprentice tasks such as exploratory data analysis, maching learning regression and classification, and multi-layered perception classification. Then, test your skills by answering assessment questions after performing deep neural network and convolutional neural network classification, as well as performing fully convolutional neural network boundry detection and NLP neural network text analysis. This lab provides access to tools typically used by AI Apprentices, including: - Jupyter Notebook - Python - Anaconda - Scikit-learn - Keras

Final Exam: AI Apprentice

Final Exam: AI Apprentice will test your knowledge and application of the topics presented throughout the AI Apprentice track of the Skillsoft Aspire AI Apprentice to AI Architect Journey.

Kenmerken

Engels (US)
22 uur
Artificial Intelligence
180 dagen online toegang
HBO

Meer informatie

Extra product informatie 0
Doelgroep Softwareontwikkelaar
Voorkennis

Om aan deze training deel te nemen, is basiskennis van AI, Machine Learning en programmeren in Python vereist.

resultaat

Aan het einde van deze training zul je kennis hebben van AI-ontwikkeling en implementatie, samen met het vermogen om de waarde van AI te communiceren in zakelijke contexten. Je bent uitgerust met de vaardigheden om AI-oplossingen te ontwikkelen, cognitieve modellen te implementeren, gebruiksvriendelijke AI-toepassingen te ontwerpen.

Positieve reacties van cursisten

Ontwikkel je tot data analist

Service is echt heel goed. Snel, klantvriendelijk, weten waar ze over praten en denken met je mee met oplossingen. Daarnaast hebben ze ook een goed leerplatform om je studie te volgen en na elke module een korte toets om te zien hoeveel je ervan heb begrepen en je kan de status zien hoeveel tijd je hebt besteed aan je studie. Ik waardeer ze enorm en ik raad elke ICT'er aan om met hen in zee te gaan om je studie te volgen.

- Emilio Jones

Training: Introduction to SQL

Eén training geprobeerd en deze naar tevredenheid gevolgd. Een module werkte in eerste instantie niet, maar na contact opgenomen te hebben met klantenservice kreeg ik snel antwoord met een oplossing.

- Lars van der Spek

Training: Certified Ethical Hacker (CEHv12) - incl. examen

Eerste keer dat ik een online training heb gedaan en zou zo weer een training volgen via icttrainingen.nl

- Jerry Jialal

Training: Microsoft Managing Modern Desktops (exam MD-101)

Het resultaat van de groep is absoluut bevredigend. Ik ga in ieder geval geen ander meer bellen.

- Antoine Evertze, Sales Engineer bij Chubb

Training: PRINCE2® 6e editie Foundation- incl. examen

Als er wat is staan ze altijd voor me klaar. Ik word meteen geholpen als ik bel.

- E. Zeijlmans, P&O adviseur bij Parnassia Groep

Training: ITIL® 4 Foundation - incl. examen

Wij zijn gebaat bij mensen die bijblijven in hun vakgebied en continu getriggerd worden.

- W. van Uijthoven, IT manager bij gemeente Arnhem

Training: Excel 2013 Compleet

Ik heb al eens eerder een training gehad via icttrainingen.nl en dat was een erg leerzame, leuke ervaring. Nu heb ik via het werk een online cursus en deze lijkt tot nu toe ook erg leerzaam.

- Michelle Brierley

Hoe gaat het te werk?

1

Training bestellen

Nadat je de training hebt besteld krijg je bevestiging per e-mail.

2

Toegang leerplatform

In de e-mail staat een link waarmee je toegang krijgt tot ons leerplatform.

3

Direct beginnen

Je kunt direct van start. Studeer vanaf nu waar en wanneer jij wilt.

4

Training afronden

Rond de training succesvol af en ontvang van ons een certificaat!

Veelgestelde vragen

Veelgestelde vragen

Op welke manieren kan ik betalen?

Je kunt bij ons betalen met iDEAL, PayPal, Creditcard, Bancontact en op factuur. Betaal je op factuur, dan kun je met de training starten zodra de betaling binnen is.

Hoe lang heb ik toegang tot de training?

Dit verschilt per training, maar meestal 180 dagen. Je kunt dit vinden onder het kopje ‘Kenmerken’.

Waar kan ik terecht als ik vragen heb?

Je kunt onze Learning & Development collega’s tijdens kantoortijden altijd bereiken via support@icttrainingen.nl of telefonisch via 026-8402941.

Background Frame
Background Frame

Onbeperkt leren

Met ons Unlimited concept kun je onbeperkt gebruikmaken van de trainingen op de website voor een vast bedrag per maand.

Bekijk de voordelen

Heb je nog twijfels?

Of gewoon een vraag over de training? Blijf er vooral niet mee zitten. We helpen je graag verder. Daar zijn we voor!

Contactopties