Grootste online IT opleider

Beste klantenservice

Veel e-learning in prijs verlaagd

Na betaling, direct starten

Data Analist naar Data Scientist - Deel 1 Data Analist

Vanaf

€ 299,00
€ 361,79 Incl. BTW

1 x Data Analist naar Data Scientist - Deel 1 Data Analist   +
€ 299,00
€ 361,79 Incl. BTW

€ 299,00
€ 361,79 Incl. BTW


Bestellen namens een bedrijf?

Duur: 39 uur |

Taal: Engels (US) |

Online toegang: 365 dagen |

In Onbeperkt Leren

Gegevens

Dit is deel 1 van het leerpad Data Analist naar Data Scientist.

In dit deel wordt gefocust op de vaardigheden en kennis die je nodig hebt als Data Analist; het verzamelen en controleren van gegevens om deze te verwerken tot informatie. Deze informatie wordt vervolgens geanalyseerd en omgezet in kennis.

In dit deel leer je hoe je Python en Microsoft R inzet om data te analyseren. Naast deze talen leer je ook meer over Hadoop en MongoDB en ga je aan de slag met Data Silo's.

Je vindt hier verschillende cursussen die je voorbereiden om aan de slag te gaan als Data Analist. Daarnaast is er een livelab beschikbaar om te oefenen. Je sluit dit deel af met een examen.

Resultaat

Je hebt de handvaten om aan de slag te gaan als Data analist, naast Python en Microsoft R ben je ook in staat om te werken met Hadoop, MongoDB en Data Silo's.

Voorkennis

Goede analytische skills en basiskennis over statistieken is handig.

Doelgroep

Data-analist

Inhoud

Data Analist naar Data Scientist - Deel 1 Data Analist

39 uur

Data Architecture Primer

Explore how we define data, it

Data Engineering Fundamentals

Data engineering is the area of data science that focuses on practical applications of data collection and analysis. In this course, you will explore distributed systems, batch vs. in-memory processing, NoSQL uses, and the various tools available for data management/big data and the ETL process.

Python for Data Science: Introduction to NumPy for Multi-dimentional Data

NumPy is a Python library that works

Python for Data Science: Advanced Operations with NumPy Arrays

NumPy is a Python library that works

Python for Data Science: Introduction to Pandas

Discover how to work with series and

Python for Data Science: Manipulating and Analyzing Data in Pandas DataFrames

Explore different ways to iterate

R for Data Science: Data Structures

Explore the use of the common data

R for Data Science: Importing and Exporting Data

Discover how to use R to import and

R for Data Science: Data Exploration

Explore data in R using the dplyr

R for Data Science: Regression Methods

Discover how to apply regression

R for Data Science: Classification & Clustering

Examine how to apply classification

Data Science Statistics: Simple Descriptive Statistics

Explore the two most basic types of descriptive statistics, measures of central tendency and dispersion. Examine the most common measures of each type, as well as their strengths and weaknesses.

Data Science Statistics: Common Approaches to Sampling Data

The goal of all modeling is generalizing as well as possible from a sample to the population as a whole. Explore the first step in this process, obtaining a representative sample from which meaningful generalizable insights can be obtained.

Data Science Statistics: Inferential Statistics

Inferential statistics go beyond merely describing a dataset and seek to posit and prove or disprove the existence of relationships within the data. Explore hypothesis testing, which finds wide applications in data science.

Accessing Data with Spark: An Introduction to Spark

Explore the basics of Apache Spark,

Getting Started with Hadoop: Fundamentals & MapReduce

Apache Hadoop is a collection of open-source software utilities that facilitates solving data science problems. In this course, you will explore the theory behind big data analysis using Hadoop and how MapReduce enables the parallel processing of large datasets distributed on a cluster of machines.

Getting Started with Hadoop: Developing a Basic MapReduce Application

Getting Started with Hadoop: Developing a Basic MapReduce Application

Hadoop HDFS: Introduction

HDFS is the file system which enables the parallel processing of big data in distributed cluster. Explore the concepts of analyzing large datasets and explore how Hadoop and HDFS make this process very efficient.

Hadoop HDFS: Introduction to the Shell

Discover how to set up a Hadoop Cluster on the cloud and explore the bundled web apps - the YARN Cluster Manager app and the HDFS NameNode UI. Then use the hadoop fs and hdfs dfs shells to browse the Hadoop file system.

Hadoop HDFS: Working with Files

Explore the Hadoop file system using the HDFS dfs shell and perform basic file and directory-level operations. Transfer files between a local file system and HDFS and explore ways to create and delete files on HDFS.

Hadoop HDFS: File Permissions

HDFS is the file system which enables the parallel processing of big data in distributed cluster. When managing a data warehouse, not all users should be given free reign over all the datasets. Explore how file permissions can be viewed and configured in HDFS. The NameNode UI is used to monitor and explore HDFS.

Data Silos, Lakes, & Streams: Introduction

  • Traditional data warehousing is transitioning to be more

  • cloud-based and this can be a key area that must be mastered for
  • data science. In this course you will examine the organizational
  • implications of data silos and explore how data lakes can help make
  • data secure, discoverable, and queryable. Discover how data lakes
  • can work with batch and streaming data.

Data Silos, Lakes, and Streams: Data Lakes on AWS

  • Traditional data warehousing is transitioning to be more

  • cloud-based and this can be a key area that must be mastered for
  • data science. In this course, you will discover how to build a data
  • lake on the AWS cloud by storing data in S3 buckets and indexing
  • this data using AWS Glue. Explore how to run crawlers to
  • automatically crawl data in S3 to generate metadata tables in
  • Glue.

Data Silos, Lakes, & Streams: Sources, Visualizations, & ETL Operations

  • Traditional data warehousing is transitioning to be more

  • cloud-based and this can be a key area that must be mastered for
  • data science. In this course, you will discover how to configure
  • Glue crawlers to work with different data stores on AWS. Examine
  • how to visualize the data stored in the data lake with AWS
  • QuickSight and how to perform ETL operations on the data using Glue
  • scripts.

Data Analysis Application

Discover how to perform data analysis using Anaconda Python, R, and related analytical libraries and tools.

Data Science Fundamentals for Python and MongoDB

Helping you build the foundational data science skills necessary to work with and better understand complex data science algorithms, this book provides complete Python coding examples to complement and clarify data science concepts, and enrich the learning experience.

Comparative Approaches to Using R and Python for Statistical Data Analysis

Providing insights on relevant topics, such as inference, factor analysis, and linear regression, this book is a comprehensive source of emerging research and perspectives on the latest computer software and available languages for the visualization of statistical data.

Beginning Apache Spark 2: With Resilient Distributed Datasets, Spark SQL, Structured Streaming and Spark Machine Learning Library

A tutorial on the Apache Spark platform written by an expert engineer and trainer, this book will give you the fundamentals to become proficient in using Apache Spark and know when and how to apply it to your big data applications.

Big Data and Hadoop: Learn by Example

Containing the latest trends in big data and Hadoop, this learn-by-doing resource explains how big Big Data is and why everybody is trying to implement it into their IT projects.

Pro Hadoop Data Analytics: Designing and Building Big Data Systems using the Hadoop Ecosystem

Emphasizing best practices to ensure coherent, efficient development, this book provides the right combination of architecture, design, and implementation information to create analytical systems that go beyond the basics of classification, clustering, and recommendation.

Practical Enterprise Data Lake Insights: Handle Data-Driven Challenges in an Enterprise Big Data Lake

Use this practical guide to successfully handle the challenges encountered when designing an enterprise data lake and learn industry best practices to resolve issues.

Enterprise Big Data Engineering, Analytics, and Management

Featuring essential big data concepts including data mining, artificial intelligence, and information extraction, this book presents novel methodologies and practical approaches to engineering, managing, and analyzing large-scale data sets with a focus on enterprise applications and implementation.

Statistics: Unlocking the Power of Data, Second Edition

Driven by real data and real applications, this book focuses on data analysis and the primary goal is to enable students to effectively collect data, analyze data, and interpret conclusions drawn from data.

Final Exam: Data Analyst

Final Exam: Data Analyst will test your knowledge and application of the topics presented throughout the Data Analyst track of the Skillsoft Aspire Data Science Journey.

Opties bij cursus

Wij bieden, naast de training, in sommige gevallen ook diverse extra leermiddelen aan. Wanneer u zich gaat voorbereiden op een officieel examen dan raden wij aan om ook de extra leermiddelen te gebruiken die beschikbaar zijn bij deze training. Het kan voorkomen dat bij sommige cursussen alleen een examentraining en/of LiveLab beschikbaar is.

Examentraining (proefexamens)

In aanvulling op deze training kunt u een speciale examentraining aanschaffen. De examentraining bevat verschillende proefexamens die het echte examen dicht benaderen. Zowel qua vorm als qua inhoud. Dit is de ultieme manier om te testen of u klaar bent voor het examen. 

LiveLab

Als extra mogelijkheid bij deze training kunt u een LiveLab toevoegen. U voert de opdrachten uit op de echte hardware en/of software die van toepassing zijn op uw Lab. De LiveLabs worden volledig door ons gehost in de cloud. U heeft zelf dus alleen een browser nodig om gebruik te maken van de LiveLabs. In de LiveLab omgeving vindt u de opdrachten waarmee u direct kunt starten. De labomgevingen bestaan uit complete netwerken met bijvoorbeeld clients, servers, routers etc. Dit is de ultieme manier om uitgebreide praktijkervaring op te doen.

Waarom Icttrainingen.nl?

Via ons opleidingsconcept bespaar je tot 80% op trainingen

Start met leren wanneer je wilt. Je bepaalt zelf het gewenste tempo

Spar met medecursisten en profileer je als autoriteit in je vakgebied.

Ontvang na succesvolle afronding van je cursus het certificaat van deelname van Icttrainingen.nl

Krijg inzicht in uitgebreide voortgangsinformatie van jezelf of je medewerkers

Kennis opdoen met interactieve e-learning en uitgebreide praktijkopdrachten door gecertificeerde docenten

Bestelproces

Zodra wij uw order en betaling hebben verwerkt, zetten wij uw trainingen klaar en kunt u aan de slag. Heeft u toch nog vragen over ons orderproces kunt u onderstaande button raadplegen.

lees meer over het orderproces

hoe werkt aanvragen met STAP

Wat is inbegrepen?

Certificaat van deelname ja
Docent inbegrepenja
Voortgangsbewaking ja
Award Winning E-learning ja
Geschikt voor mobiel ja
Kennis delen Onbeperkte toegang tot onze community met IT professionals
Studieadvies Onze consultants zijn beschikbaar om je te voorzien van studieadvies
Studiemateriaal Gecertificeerde docenten met uitgebreide kennis over de onderwerpen
Service Service via chat, telefoon, e-mail (razendsnel)

Platform

Na bestelling van je training krijg je toegang tot ons innovatieve leerplatform. Hier vind je al je gekochte (of gevolgde) trainingen, kan je eventueel cursisten aanmaken en krijg je toegang tot uitgebreide voortgangsinformatie.

Life Long Learning

Meerdere cursussen volgen? Misschien is ons Life Long Learning concept wel wat voor u

lees meer

Neem contact op

Studieadvies nodig? Neem contact op!


Contact