Data Analist naar Data Scientist - Deel 4 Data Scientist
Vanaf

Gegevens
Dit is deel 4 van het leerpad Data Analist naar Data Scientist.
In dit deel wordt gefocust op de vaardigheden en kennis die je nodig hebt als Data Scientist. Vaardigheden en kennis over het gebruik van data visualisatie, APIs, Machine Learning and Deep Learning algorithms komen aan bod.
Je vindt hier verschillende cursussen die je voorbereiden om aan
de slag te kunnen als Data Scientist. Daarnaast is er een livelab
beschikbaar om te oefenen. Je sluit dit deel af met een
examen.
Resultaat
Na het afronden van dit onderdeel beschik je over kennis en vaardigheden die je nodig hebt in het werk als Data Scientist.
Voorkennis
Je wordt verondersteld de kennis en vaardigheden te beheersen die in deel 1 (Data Analist), deel 2 (Data Wrangler) en deel 3 (Data Ops) van dit leerpad worden behandeld.
Inhoud
Data Analist naar Data Scientist - Deel 4 Data Scientist
Balancing the Four Vs of Data: The Four Vs of Data
The four Vs of big data are a popular paradigm used to extract the meaning and value from massive datasets. Discover the four Vs, their purpose and uses, and how to extract value using the four Vs.
Data Science 2: Data Driven Organizations
In order for an organization to be data science aware, it must evolve and become data driven. In this course, you will examine the meaning of a data driven organization and explore analytic maturity, data quality, missing data, duplicate data, truncated data, and data provenance.
Raw Data to Insights: Data Ingestion & Statistical Analysis
To master data science it is important to take raw data and turn that into insights. In this course you will explore the concept of statistical analysis and implement data ingestion using various technologies including NiFi, Sqoop, and Wavefront.
Raw Data to Insights: Data Management & Decision Making
To master data science it is important to take raw data and turn that into insights. In this course you will learn to apply and implement various essential data correction techniques, transformation rules, deductive correction techniques, and predictive modelling using critical data analytical approaches.
Tableau Desktop: Real Time Dashboards
To become a data science expert, you must master the art of data visualization. In this course you will explore how to create and use real time dashboards with Tableau
Storytelling with Data: Introduction
Explore the concept of storytelling with data, the processes involved in storytelling and interpreting data contexts. We will also explore the prominent types of analysis, visualizations, and graphic tools that we can use for storytelling.
Storytelling with Data: Tableau & PowerBI
Explore how to select the most effective visuals for storytelling, eliminating clutters, and the best practices for story design. We will also learn to work with Tableau and PowerBI to facilitate storytelling with data.
Python for Data Science: Basic Data Visualization Using Seaborn
Seaborn is a data visualization
Python for Data Science: Advanced Data Visualization Using Seaborn
Data Science Statistics: Using Python to Compute & Visualize Statistics
Discover how to use the NumPy, Pandas, and SciPy libraries to perform various statistical summary operations on real datasets and how to visualize your datasets in the context of these summaries using Matplotlib.
Advanced Visualizations & Dashboards: Visualization Using Python
Explore approaches to building and implementing visualizations, as well as plotting and graphing using Python libraries like Matplotlib, ggplot, bokeh, and Pygal.
R for Data Science: Data Visualization
Explore how to use R to create plots
and charts of data.
Machine & Deep Learning Algorithms: Data Preperation in Pandas ML
Classification, regression, and clustering are some of the most commonly used machine learning techniques and there are various algorithms available for these tasks. Explore their application in Pandas ML.
Advanced Visualizations & Dashboards: Visualization Using R
Discover how to build advanced charts using Python and Jupyter Notebook. Explore R and ggplot2 visualization capabilities and how to build charts and graphs with them.
Powering Recommendation Engines: Recommendation Engines
Explore how Recommendation Engines can be created and used to provide recommendations for products and content.
Data Insights, Anomalies, & Verification: Handling Anomalies
Examine statistical and machine learning implementation methods and how to manage anomalies and improvise data for better data insights and accuracy.
Data Insights, Anomalies, & Verification: Machine Learning & Visualization Tools
Discover how to use machine learning methods and visualization tools to manage anomalies and improvise data for better data insights and accuracy.
Data Science Statisitcs: Applied Inferential Statistics
Explore how different t-tests can be performed using the SciPy library to test hypotheses. How to calculate the skewness and kurtosis of data using SciPy and compute regressions using scikit-learn is also covered.
Data Science 9: Data Research Techniques
To master data science, you must learn the techniques around data research. In this course you will discover how to apply essential data research techniques, including JMP measurement, and how to valuate data using descriptive and inferential methods.
Data Science 10: Data Research Exploration Techniques
To master data science, you must learn the techniques around
- data research. In this course you will discover how to use data
- exploration techniques to derive different data dimensions and
- derive value from the data. How to practically implement data
- exploration using R, Python, linear algebra, and plots is also
- covered.
Data Scientist 14: Data Research Statistical Approaches
Discover how to apply statistical algorithms like PDF, CDF, binomial distribution, and interval estimation for data research. How to implement visualizations to graphically represent the outcomes of data research is also covered.
Machine & Deep Learning Algorithms: Introduction
Examine the fundamentals of machine learning and how Pandas ML can be used to build ML models. The workings of Support Vector Machines to perform classification of data is also covered.
Machine & Deep Learning Algorithms: Regression & Clustering
Explore the fundamentals of regression and clustering and discover how to use a confusion matrix to evaluate classification models.
Machine & Deep Learning Algorithms: Imbalanced Datasets Using Pandas ML
The imbalanced-learn library that integrates with Pandas ML offers several techniques to address the imbalance in datasets used for classification. Explore oversampling, undersampling, and a combination of these techniques.
Creating Data APIs Using Node.js
Explore how to create RESTful OAuth APIs using Node.js.
Pro Machine Learning Algorithms: A Hands-On Approach to Implementing Algorithms in Python and R
Data Structures and Algorithms Implementation Through C
Data Visualization and Statistical Literacy for Open and Big Data
Data Visualization, Volume II: Uncovering the Hidden Pattern in Data Using Basic and New Quality Tools
Practical Enterprise Data Lake Insights: Handle Data-Driven Challenges in an Enterprise Big Data Lake
Processing Big Data with Azure HDInsight: Building Real-World Big Data Systems on Azure HDInsight Using the Hadoop Ecosystem
An Introduction to SAS Visual Analytics: How to Explore Numbers, Design Reports, and Gain Insight into Your Data
Pro Tableau: A Step-by-Step Guide
Jumpstart Tableau: A Step-By-Step Guide to Better Data Visualization
Tableau Your Data! Fast and Easy Visual Analysis with Tableau Software, Second Edition
Scalable Big Data Architecture: A Practitioner's Guide to Choosing Relevant Big Data Architecture
Cosmos DB for MongoDB Developers: Migrating to Azure Cosmos DB and Using the MongoDB API
REST API Development with Node.js: Manage and Understand the Full Capabilities of Successful REST Development, Second Edition
Practical API Architecture and Development with Azure and AWS: Design and Implementation of APIs for the Cloud
Handbook of Approximation Algorithms and Metaheuristics: Contemporary and Emerging Applications, Volume 2, Second Edition
Final Exam: Data Scientist
Final Exam: Data Scientist will test your knowledge and application of the topics presented throughout the Data Scientist track of the Skillsoft Aspire Data Science Journey.
Opties bij cursus
Wij bieden, naast de training, in sommige gevallen ook diverse extra leermiddelen aan. Wanneer u zich gaat voorbereiden op een officieel examen dan raden wij aan om ook de extra leermiddelen te gebruiken die beschikbaar zijn bij deze training. Het kan voorkomen dat bij sommige cursussen alleen een examentraining en/of LiveLab beschikbaar is.
Examentraining (proefexamens)
In aanvulling op deze training kunt u een speciale examentraining aanschaffen. De examentraining bevat verschillende proefexamens die het echte examen dicht benaderen. Zowel qua vorm als qua inhoud. Dit is de ultieme manier om te testen of u klaar bent voor het examen.
LiveLab
Als extra mogelijkheid bij deze training kunt u een LiveLab toevoegen. U voert de opdrachten uit op de echte hardware en/of software die van toepassing zijn op uw Lab. De LiveLabs worden volledig door ons gehost in de cloud. U heeft zelf dus alleen een browser nodig om gebruik te maken van de LiveLabs. In de LiveLab omgeving vindt u de opdrachten waarmee u direct kunt starten. De labomgevingen bestaan uit complete netwerken met bijvoorbeeld clients, servers, routers etc. Dit is de ultieme manier om uitgebreide praktijkervaring op te doen.
Inloggen
Waarom Icttrainingen.nl?
Via ons opleidingsconcept bespaar je tot 80% op trainingen
Start met leren wanneer je wilt. Je bepaalt zelf het gewenste tempo
Spar met medecursisten en profileer je als autoriteit in je vakgebied.
Ontvang na succesvolle afronding van je cursus het certificaat van deelname van Icttrainingen.nl
Krijg inzicht in uitgebreide voortgangsinformatie van jezelf of je medewerkers
Kennis opdoen met interactieve e-learning en uitgebreide praktijkopdrachten door gecertificeerde docenten
Bestelproces
Zodra wij uw order en betaling hebben verwerkt, zetten wij uw trainingen klaar en kunt u aan de slag. Heeft u toch nog vragen over ons orderproces kunt u onderstaande button raadplegen.
Een zakelijk account aanmaken
Wanneer je bestelt namens je bedrijf doe je er goed aan om aan zakelijk account bij ons aan te maken. Tijdens het registratieproces kan je hiervoor kiezen. Je hebt vervolgens de mogelijkheden om de bedrijfsgegevens in te voeren, PO-nummer & referentie en een afwijkend factuuradres toe te voegen.
Betaalmogelijkheden
Je hebt bij ons diverse betaalmogelijkheden. Bij alle betaalopties ontvang je sowieso een factuur na de bestelling. Gaat je werkgever betalen, dan kies je voor betaling per factuur.

Cursisten aanmaken
Als je een zakelijk account hebt aangemaakt dan heb je de optie om cursisten/medewerkers aan te maken onder je account. Als je dus meerdere trainingen koopt, kan je cursisten aanmaken en de cursussen vervolgens uitdelen aan je collega’s. De cursisten krijgen een e-mail met inloggegevens en dat zij kunnen starten met de cursus.
Voortgangsinformatie
Met een zakelijk account ben je automatisch beheerder van je organisatie en kan je naast cursisten ook managers aanmaken. Beheerders en managers kunnen tevens voortgang inzien van alle cursisten binnen de organisatie.
Wat is inbegrepen?
Certificaat van deelname | ja |
Docent inbegrepen | ja |
Voortgangsbewaking | ja |
Award Winning E-learning | ja |
Geschikt voor mobiel | ja |
Kennis delen | Onbeperkte toegang tot onze community met IT professionals |
Studieadvies | Onze consultants zijn beschikbaar om je te voorzien van studieadvies |
Studiemateriaal | Gecertificeerde docenten met uitgebreide kennis over de onderwerpen |
Service | Service via chat, telefoon, e-mail (razendsnel) |
Platform
Na bestelling van je training krijg je toegang tot ons innovatieve leerplatform. Hier vind je al je gekochte (of gevolgde) trainingen, kan je eventueel cursisten aanmaken en krijg je toegang tot uitgebreide voortgangsinformatie.

FAQ
- Op welke manieren kan ik betalen?
- Hoe werkt het bestelproces?
- Kan ik persoonlijke begeleiding krijgen bij mijn training?
Niet gevonden wat je zocht? Bekijk alle vragen of neem contact op.